

Curriculum Framework – Digital Electronics (2015-2016) Unit 2 Combinational logic – Lesson 2.1 Combinational Logic Circuit Design

Desired Results (stage 1)							
ESTABLISHED GOALS	Transfer						
It is expected that students will	TRANSFER: Students will be able to independently use their learning to						
 G1 – Demonstrate an ability to identify, formulate, and solve engineering problems. G2 – Demonstrate on ebility to 	 T1 – Translate a set of design specifications into a functional AOI combinational logic circuit following a formal design process. T2 – Recognize and apply simplification strategies to create the most efficient AOI combinational logic circuit design. 						
• G2 – Demonstrate an ability to	Meaning						
or process to meet desired	UNDERSTANDINGS: Students will understand that	ESSENTIAL QUESTIONS: Students will keep considering					
 needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. G3 – Demonstrate an ability to design and conduct experiments, as well as to analyze and interpret data. G4 – Demonstrate an ability to apply knowledge of mathematics, science, and engineering 	 U1 – There is a formal design process for translating a set of design specifications into a functional combinational logic circuit. U2 – The first step in designing a combinational logic circuit is to translate a set of design specifications into a truth table. U3 – A truth table describes the behavior of a combinational logic design by listing all possible input combinations and the desired output for each. U4 – Logic expressions can be derived from a given truth 	 Q1 – How would you use a design process to convert a set of design specifications into a functional combinational logic circuit? Q2 – What is the relationship between a combinational logic circuit's truth table, logic expression, and circuit implementation? Can I describe the process of obtaining either of the first two design items given the third? Q3 – When you simplify a logic expression using Boolean algebra, how do you know that you have the simplest solution and that the solution is correct? 					
	 table; likewise, a truth table can be constructed from a given logic expression. U5 – All logic expressions can be expressed in one of two formers over a former due to (COD) an enductor of average. 	 Q4 – In terms of circuit implementation, what is the advantage of representing all logic expression in either the SOP or POS form? 					
 G5 – Demonstrate an ability to use the techniques, skills, and 	 (POS). U6 – Simplified logic expressions are used to create 	 Q5 – Derend the following statement: All logic expression, regardless of complexity, can be implemented with AND, OR, and INVERTER Gates." 					

DE Curriculum Framework Lesson 2.1 – Page 1

Format guided by: Wiggins, G. & McTighe, J. (2011). The understanding by design guide to creating high quality units. Alexandria. VA: ASCD

 modern engineering tools necessary for engineering practice. G6 – Pursue the broad 	 circuits with fewer gates. U7 – All logic expressions, whether simplified or not, can be implemented using AND, OR, & INVERTER Gates. 	
 G6 – Pursue the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context. G7 – Demonstrate an understanding of professional and ethical responsibility. G8 – Demonstrate an ability to function on multidisciplinary teams. G9 – Demonstrate an ability to communicate effectively. G10 – Gain knowledge of contemporary issues. G11 – Recognize the need for, and develop an ability to engage in life-long learning. 	 KNOWLEDGE: Students will K1 – Know the formal design process for designing combinational logic circuits.U1,U2,U3,U4,U5,U6,U7 K2 – Know the truth tables and logic expressions associated with AND gates, OR gates, and INVERTER gates.U3,U4 K3 – Know rules and laws of Boolean Algebra including DeMorgan's Theorems.U5,U6 K4 – Know that a truth table can be interpreted into an algebraic expression representing the output of the circuit.U3,U4 K5 – Know that a simplified logic expression can produce the same outputs with fewer gates.U6 K6 – Recognize sum-of-product expressions and product-of-sum expressions.U5 	 SKILLS: Students will S1 – Translate design specifications into truth tables.U2 S2 – Generate un-simplified logic expressions from truth tables.U4 S3 – Construct truth tables from logic expressions.U4 S4 – Formulate simplified logic expressions using the rules and laws of Boolean algebra, including DeMorgan's Theorems.U6 S5 – Analyze AOI (AND/OR/INVERTER) combinational logic circuits to compare their equivalent logic expressions and truth tables.U4 S6 – Translate a set of design specifications into a functional AOI combinational logic circuit following a formal design process. U1,U2,U3,U4,U5,U6,U7 S7 – Simulate and prototype AOI logic circuits using Circuit Design Software (CDS) and a Digital Logic Board (DLB).U1,U2,U3,U4,U5,U6,U7 S8 – Identify the IC number and recognize the related wiring diagram for AOI Logic.U1

Evidence (stage 2)			Learning Plan (stage 3)	
Activities (A) Projects (P) Problems(B)	Assessment FOR Learning	Assessment OF Learning	Activities (A) Projects (P) Problems(B)	Knowledge and Skills
2.1.1.A AOI Design: Truth Tables to Logic Expression	 Student responses to examples in presentation 2.1.1 AOI TT to Logic Expressions Essential Questions 	 Successful analysis of truth tables Conclusion Questions 	2.1.1.A AOI Design: Truth Tables to Logic Expression	K1,K2,K4,S1,S2,S6,S7,S8
2.1.2.A AOI Analysis: Circuit to Truth Table to Logic Expression	 Student responses to examples in presentation 2.1.2 AOI Analysis: Circuit to Truth Table to Logic Expression Essential Questions 	 Successful circuit analysis Conclusion Questions 	2.1.2.A AOI Analysis: Circuit to Truth Table to Logic Expression	K1,K2,K4,S1,S2,S5,S8
2.1.3.A AOI Logic Implementation: Design Specifications	 Student responses to examples in presentation 2.1.3 AOI Logic Implementation: Design Specifications Essential Questions 	 Print out of simulated circuits Conclusion Questions 	2.1.3.A AOI Logic Implementation: Design Specifications	K1,K2,K4,S1,S2,S3,S5,S6,S7, S8
2.1.4.A Circuit Simplification: Boolean Algebra	 Student responses to examples in presentation 2.1.4 Circuit Simplification: Boolean Algebra Essential Questions 	 Successful completion of simplification problems (13) Print out of simulated circuits Conclusion Questions 	2.1.4.A Circuit Simplification: Boolean Algebra	K2,K3,K4,K5,K6,S2,S4,S7,S8
2.1.5.A Circuit Simplification: DeMorgan's Theorems	 Student responses to examples in presentation 2.1.5 Circuit Simplification: DeMorgan's Theorems Essential Questions 	 Successful completion of simplification problems (6) Print out of simulated circuits Conclusion Questions 	2.1.5.A Circuit Simplification: DeMorgan's Theorems	K2,K3,K4,K5,K6,S2,S4,S7,S8
2.1.6.P Majority Vote Circuit: AOI Logic Design	 Essential Questions 	 Print out of simulated circuits Demonstration of functioning circuit 	2.1.6.P Majority Vote Circuit: AOI Logic Design	K1,K2,K3,K4,K5,K6,S1,S2,S3, S4,S5,S6,S7,S8