Curriculum Framework – Computer Integrated Manufacturing Unit 2 Manufacturing Processes – Lesson 2.3 Product Development ## Desired Results (stage 1) #### **ESTABLISHED GOALS** It is expected that students will... - G1 Demonstrate an ability to identify, formulate, and solve engineering problems. - G2 Demonstrate an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. - G3 Demonstrate an ability to design and conduct experiments, as well as to analyze and interpret data. - G4 Demonstrate an ability to apply knowledge of mathematics, science, and engineering. #### Tran TRANSFER: Students will be able to independently use their learning to ... - T1 Design a part with consideration to manufacturability. (NGSS Engineering Practice 2) - T2 Transform a concept into a physical product and analyze its effectiveness. (NGSS Engineering Practice 4) - T3 Adapt existing knowledge to unfamiliar tools. (ABET 2014-2015, criterion 3i) - T4 Evaluate merits of developing a model manually before advancing to complex software. (NGSS Engineering Practice 2) #### Meaning UNDERSTANDINGS: Students will understand that ... - U1 Many machines exist to perform manufacturing processes. - U2 Products manufactured today have been greatly influenced by the advancement of machines and technology. - U3 Machine code is an essential tool used to communicate with some machines. - U4 Computer Aided Manufacturing (CAM) programming tools make it possible to manufacture physical models using Computer Aided Design (CAD) programs. - U5 Several variables in machining operations affect the final product in manufacturing. - U6 Jigs and fixtures are essential in maintaining consistency and quality control. - U7 Profit margins are essential to a company's survival in a competitive market. ESSENTIAL QUESTIONS: Students will keep considering ... - Q1 How does manufacturability affect a design of a product? - Q2 How does the capability of a machine affect a manufacturing process? - Q3 How does material selection affect a manufacturing process? - G5 Demonstrate an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. - G6 Pursue the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context. - G7 Demonstrate an understanding of professional and ethical responsibility. - G8 Demonstrate an ability to function on multidisciplinary teams. - G9 Demonstrate an ability to communicate effectively. - G10 Gain knowledge of contemporary issues. - G11 Recognize the need for, and develop an ability to engage in life-long learning. U8 – Prototyping is a major step in the design cycle of manufactured goods and has been greatly advanced with the advent and use of rapid prototyping processes. ### KNOWLEDGE: Students will... - K1 List examples of common CNC machines. U1, U2, U3, U4 - K2 List common robot applications used in manufacturing. U1 - K3 Identify common cutting tools. U1, U5 - K4 Describe parts and functions of common machines used in manufacturing. U1, U4, U5, U6 - K5 Select formulas which are used to determine milling machine settings. U3, U4, U5 - K6 Describe common G & M Codes. U3, U4, U5 - K7 Describe a procedure to operate a milling machine. U3, U5, U6 ## Acquisition SKILLS: Students will... - S1 Identify a machine which can be used to perform a process. U1, U2, U5 - S2 Calculate settings needed for a milling machine. U3, U5 - S3 Interpret the actions that will be performed given a sample of machine code. U3, U5 - S4 Manually create machine code required to manufacture a product. U3, U5 - S5 Create machine code to manufacture a product using Computer Aided Manufacturing (CAM) program. U3, U4, U5 - S6 Test machine code accuracy using simulation software. U3, U5 - S7 Create a model using Computer Aided Design (CAD) software. U3, U4, U5 - S8 Create a product using a CNC milling machine. U1, U3, U4, U5, U6 | Activities (A) | Assessment FOR | Assessment OF | Activities (A) | | |----------------------------------|---|---|----------------------------------|--| | Projects (P) | Learning | Learning | Projects (P) | | | Problems(B) | | | Problems(B) | | | 2.3.1.A Introduction to Machines | Essential questions | Conclusion questions | 2.3.1.A Introduction to Machines | | | Macilines | Responses to prompts for | | Wacrimes | | | | machine names | | | | | 2.3.2.A Speeds and Feeds | Essential questions | Responses to speeds | 2.3.2.A Speeds and Fe | | | | Responses to speeds and | and feeds questions | | | | | feeds questions | Conclusion questions | | | | 2.3.3a.P G&M Code | Essential questions | Accurate G&M code | 2.3.3a.P G&M Code Al | | | Absolute | Accurate drawing of | statements | | | | | initials | | | | | | Accurate coordinates | | | | | 2.3.3b.P G&M Code | Essential questions | Accurate G&M code | 2.3.3b.P G&M Code Re | | | Relative | Accurate drawing of | statements | | | | | initials | | | | | | Accurate coordinates | | | | | 2.3.4.P Practice Machining | Essential questions | Accurate CAD model | 2.3.4.P Practice Machin | | | Flange | Accurate CAD model | Appropriate feature | Flange | | | | Appropriate feature | identification | | | | | identification | Appropriate tool | | | | | Appropriate tool selection | selection | | | | | Correct spindle speed | Correct spindle speed | | | | | rate calculation | rate calculation | | | | | Correct feed rate | Correct feed rate | | | | | calculation | calculation | | | | | Accurate tool paths | Accurate tool paths | | | | | | Error free NC code | | | | | | CNC device operated | | | | | | efficiently and safely | | | | Learning Plan (stage 3) | | | | | | |---|--------------------------------|--|--|--|--| | Activities (A) Projects (P) Problems(B) | Knowledge and Skills | | | | | | 2.3.1.A Introduction to Machines | K4, S1 | | | | | | 2.3.2.A Speeds and Feeds | K5, S2 | | | | | | 2.3.3a.P G&M Code Absolute | K6, K7, S3, S4, S5, S6 | | | | | | 2.3.3b.P G&M Code Relative | K6, K7, S3, S4, S5, S6, S8 | | | | | | 2.3.4.P Practice Machining Flange | K6, K7, S3, S4, S5, S6, S7, S8 | | | | | | | | Physical part produced
matches model
dimension requirements Conclusion questions | | | |------------------------------------|--|---|------------------------------------|--------------------------------| | 2.3.5.P Container Design | Essential questions Accurate part sketch including dimensions Accurate CAD model Accurate CAM tool path model Successful simulation produced using CNCMotion | Operation meets all constraints Accurate CAD model Accurate CAD drawing Accurate CAM tool path model Successful simulation produced using CNCMotion CNC device operated efficiently and safely Physical parts produced matches model dimension and clearance requirements Conclusion questions | 2.3.5.P Container Design | K6, K7, S3, S4, S5, S6, S7, S8 | | 2.3.5a.P Tic Tac Toe
(Optional) | Essential questions Accurate CAD model Accurate CAM tool path model Successful simulation produced using CNCMotion | Operation meets all constraints Accurate CAD model Accurate CAD drawing Accurate CAM tool path model Successful simulation produced using CNCMotion CNC device operated efficiently and safely | 2.3.5a.P Tic Tac Toe
(Optional) | K6, K7, S3, S4, S5, S6, S7, S8 | | 2.3.5b.P Triangle Puzzle (Optional) | Essential questions Accurate CAD model Accurate CAM tool path model Successful simulation | Physical parts produced matches model dimension and clearance requirements Conclusion Questions Operation meets all constraints Accurate CAD model Accurate CAD drawing Accurate CAM tool path model | 2.3.5b.P Triangle Puzzle
(Optional) | K6, K7, S3, S4, S5, S6, S7, S8 | |-------------------------------------|--|---|--|--------------------------------| | | produced using
CNCMotion | Successful simulation produced using CNCMotion CNC device operated efficiently and safely Physical parts produced | | | | | | matches model dimension and clearance requirements Conclusion questions | | |